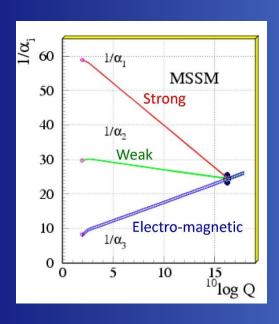


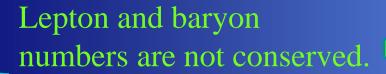
Nucleon Decay Searches in the past, present, and future

M.Miura

Kamioka Observatory, ICRR


The 26 th Workshop on Weak Interactions and Neutrinos June $21^{\rm st}$, 2017 at UC Irvine

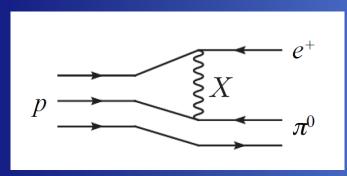
1. Introduction


The Standard Model has been successful!

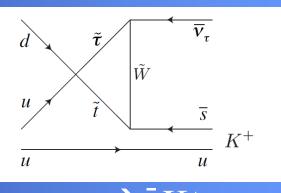
... but why so many parameters?

GUTs: attempt to unify Strong and Electroweak interactions.

Cannot be reached by Accelerators.


Proton decay is permitted!

Nucleon decay experiment is the direct probe for GUTs.



Two benchmark decay modes

$$p \rightarrow e^+ \pi^0$$

Proton lifetime predictions

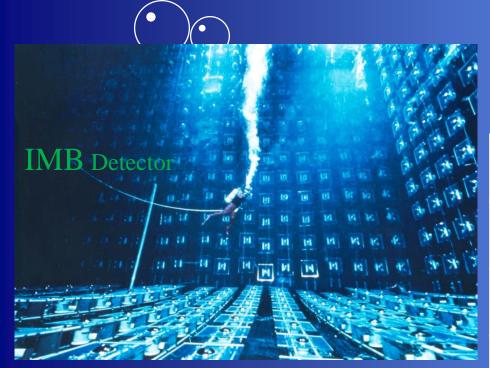
Model	Mode	Prediction (years)
Minimal SU(5)	$p \rightarrow e^+ \pi^0$	$10^{28.5} \sim 10^{31.5} [1]$
Minimal SO(10)	p → e⁺π ⁰	$10^{30} \sim 10^{40} [2]$
Minimal SUSY SU(5)	$p \rightarrow \bar{\nu} K^{+}$	$\leq 10^{30} [3]$
SUGRA SU(5)	$p \rightarrow \bar{\nu} K^{+}$	$10^{32} \sim 10^{34} [4]$
SUSY SO(10)	$p \rightarrow \bar{\nu} K^+$	10 ³² ~10 ³⁴ [5]

- P. Langacker, Phys. Reports 72, 185 (1981)
- [2] D.G. Lee, M.K. Parida, and M. Rani, Phys. Rev. D51, 229 (1995)
- [3] H.Murayama and A. Pierce, Phys. Rev. D65, 55009 (2002)
- 4] T. Goto and T. Nihei, Phys. Rev. D59, 115009 (1999)
- [5] V. Lucas and S. Ruby, Phys. Rev. D55, 6986 (1997).

 $> 10^{30} \text{ years }!$

Need huge detector.

2. Nucleon decay searches before SK


- In the late 1970s, several experiments were proposed.
 - \triangleright minimal SU(5) prediction: $10^{28} \sim 10^{32}$ years
 - \triangleright 1kt detector expected 10 \sim 10³ decays.
- Background events for proton decay searches are induced by atmospheric ν interactions (they were also ν detectors).
- Two types of detector came into fashion (the 1st generation).

Fine-grained iron calorimeter

- Excellent in track reconstruction.
- Cost per ton were expensive.
- KGF (India), Soudan I,II(Minnesota), NUSEX(Italy/France)

Water Cherenkov detector

- Good momentum resolution and PID.
- Cheaper and easier to build larger detectors.
- ➤ HPW (Harvard-Purdue-Wisconsin), IMB (Irvine, Michigan, Brookhaven), Kamiokande

Results of Water Cherenkov detector

Detector	Period	Mass (ton)	Limit (e ⁺ π ⁰ , 10 ³⁰ yr)
HPW-I	1983- 1984	680	1.0
Kamioka nde	1983- 1997	1040	260
IMB	1982- 1992	3300	540

Results of Iron calorimeter

)	Detector	Period	Mass (ton)	Limit (e ⁺ π ⁰ , 10 ³⁰ yr)
	NUSEX	1982- 1998	110- 130	15
<u> </u>	Frejus	1984- 1988	550	70
	Soudan I	1981- 1990	16-24	1.3

Could not find evidence. Need more volume.

→ Super-Kamiokande (The 2nd generation)

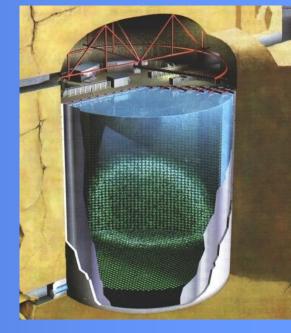
3. Present: Super-Kamiokande

Location: Kamioka mine, Japan. ~1000 m under ground.

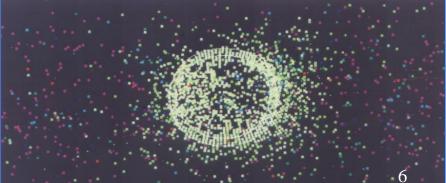
Size: 39 m (diameter) x 42 m (height), 50kton water.

Optically separated into inner detector (ID) and

outer detector (OD, ~2.5 m layer from tank wall.)


Photo device: 20 inch PMT (ID), 8 inch PMT (OD, veto

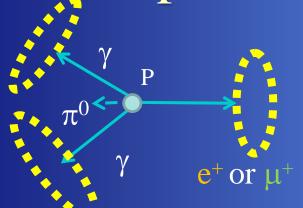

cosmic rays, ~1/3 comes from IMB).


Mom. resolution: 3.0 % for e 1 GeV/c (4.1%: SK-2).

Particle ID: Separate into EM shower type (e-like) and muon

type (µ-like) by Cherenkov ring angle and ring pattern.

e-like (e \pm , γ)


20-year History of Super-Kamiokande

→ Many of the current limits come from SK.

PRD **95**, 12004 (2017)

3-1. p \rightarrow e⁺ π^0 , $\mu^+\pi^0$ mode

Event features;

- e⁺, and π^0 are back-to-back (459 MeV/c)
- $\pi^0 \rightarrow 2 \gamma s$: all particles are detectable.
- → Reconstruct proton mass and momentum.

Selection;

- Fully contained, VTX in fiducial volume.
- 2 or 3 ring

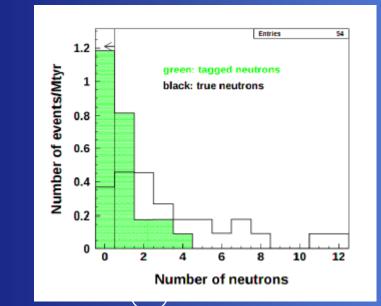
 $e^+\pi^0$ case;

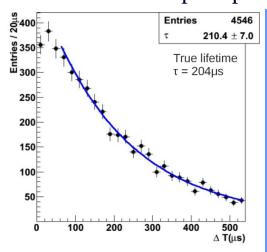
• all e-like, w/o decay-e.

Selected by simple cuts!

 $\mu^+\pi^0$ case;

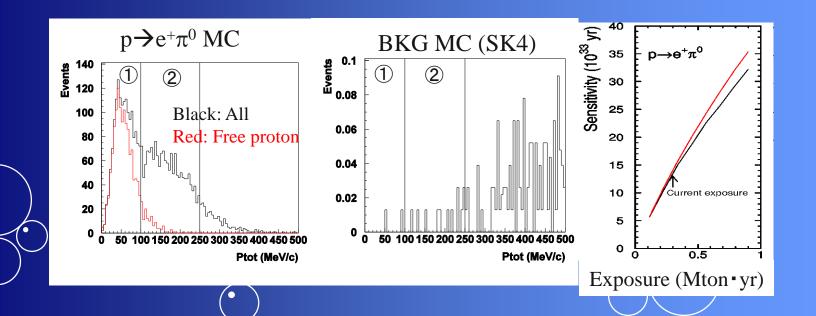
• one µ-like with decay-e.


- $85 < M\pi^0 < 185 \text{ MeV (for 3-ring event)}$.
- $800 < M_P < 1050 \text{ MeV & P}_{tot} < 250 \text{ MeV/c}$

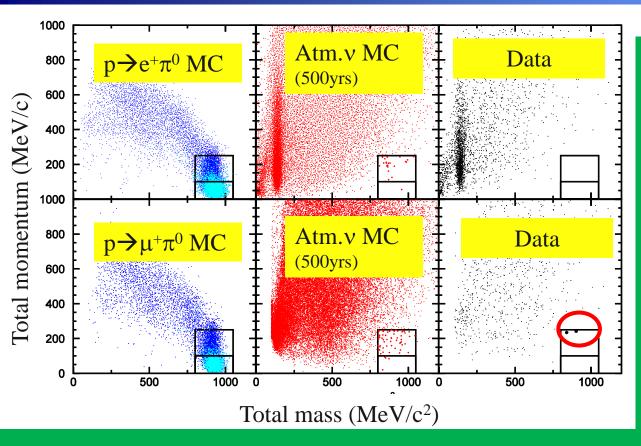


New technique 1: Neutron tag

- Most of atmospheric v BKG are accompanied by neutrons.
- A neutron is captured by a hydrogen (~200 μ sec) and emits γ ray; $n+p \rightarrow d+\gamma$ (2.2 MeV)
- New electronics installed in SK4 enables us to record all hits including this γ ray.
- Search for hit cluster $N \ge 7$ in 10 ns window after prompt signal, and neutrons are selected by neural network.
- Eff. 20.5 %, BKG 1.8 %.
- About half of the background events can be rejected by requiring no neutron.



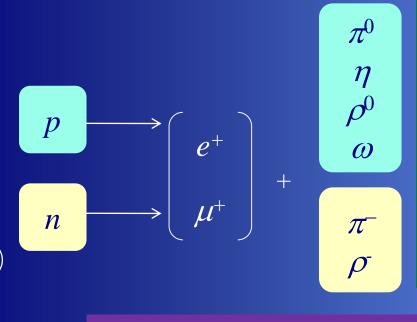
Time difference from prompt signal



New technique 2: two box analysis

- Signal box defined by 800<Mtot<1050 MeV/c² and Ptot<250MeV/c is divided into two regions;
 - 1 Lower box: Ptot<100 MeV/c
 - ✓ Signal: Dominated by free proton(H) decay, free from nuclear effects → Almost BKG free.
 - 2 Higher box: 100≤Ptot<250 MeV/c
 - ✓ Signal: Dominated by bound proton (O) decay, more uncertainty due to nuclear effects. More BKG.
- Achieve better sensitivity.

Results


```
p \rightarrow e^+ \pi^0
           Eff. (%) BKG
                               OBS
Low P<sub>tot</sub> 18.7
                     0.07
High P<sub>tot</sub> 19.9 0.54
Total
             38.6
                      0.61
p \rightarrow \mu^+ \pi^0
          Eff.(%)
                       BKG
                                OBS
Low P<sub>tot</sub> 18.0 0.05
High P<sub>tot</sub> 16.7 0.82
Total
           34.7
                       0.87
(Poison(0.87, \ge 2) = 23\%)
```

Lifetime limt (90% CL,306kton yrs data)

$$p \rightarrow e^{+}\pi^{0:} > 1.6x10^{34} \text{ years}$$

 $p \rightarrow \mu^{+}\pi^{0:} > 7.7x10^{33} \text{ years}$

3-2. N→ charged anti-lepton +meson

- Several decay modes in which a nucleon decays into a charged lepton and a meson (not only π⁰) are proposed.
- Those searches have been studied systematically with 316kton year data and accepted by PRD (S. Mine (UCI), et al.).

Also improved in analysis:

- ✓ Reduce BKG in SK4 by neutron tag.
- ✓ Two box analysis for $p \rightarrow e^+/\mu^+ + \eta^0$, $\eta^0 \rightarrow 2\gamma$
- ✓ And so on .

Event selection

1) Select rings (+ Michel electron cut)

$N \rightarrow$	lepton	meson	meson decay mode	(Br.)
$p \rightarrow$	$e^{+} (\mu^{+})$	π^0	$\pi^0 o 2\gamma$	(98.8%)
$p \rightarrow$	e^+ (μ^+)	η	$\eta o 2\gamma$	(39.3%)
			$\eta o 3\pi^0$	(32.6%)
$p \rightarrow$	e^+ (μ^+)	$ ho^0$	$ ho^0 ightarrow \pi^+\pi^-$	$(\sim 100\%)$
$p \rightarrow$	e^+ (μ^+)	ω	$\omega ightarrow \pi^0 \gamma$	(8.9%)
			$\omega \to \pi^+\pi^-\pi^0$	(89.2%)
$n \rightarrow$	$e^{+} (\mu^{+})$	π^-		
$n \rightarrow$	$e^{+} (\mu^{+})$	$ ho^-$	$\rho^- \to \pi^- \pi^0$	$(\sim 100\%)$

Primary e/µ ring and

- \rightarrow 2 e-like rings
- \rightarrow 2 e-like rings
- \rightarrow 4, 5 e-like rings
- \rightarrow 2 μ -like rings
- \rightarrow 2,3 e-like rings
- \rightarrow 2 e-like and 1 μ -like
- \rightarrow 2-elike and 1 μ -like

2) Reconstruct meson mass

 η : 480 ~ 620 MeV/c²

 ρ^0 , ρ^- : 600 ~ 900 MeV/c²

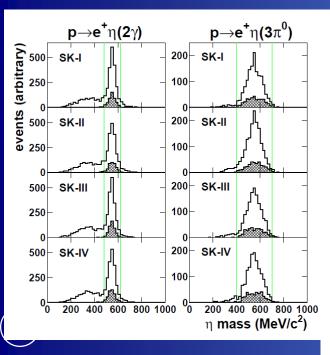
ω: 650 ~ 900 MeV/c²

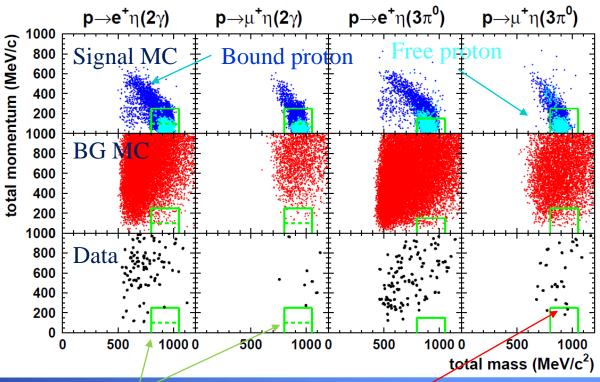
3) Reconstruct nucleon mass and momentum

mass: $800 \sim 1050 \text{ MeV/c}^2$

 $(600 \sim 800 \text{MeV for p} \rightarrow e\omega, 450 \sim 700 \text{MeV for p} \rightarrow \mu\omega)$

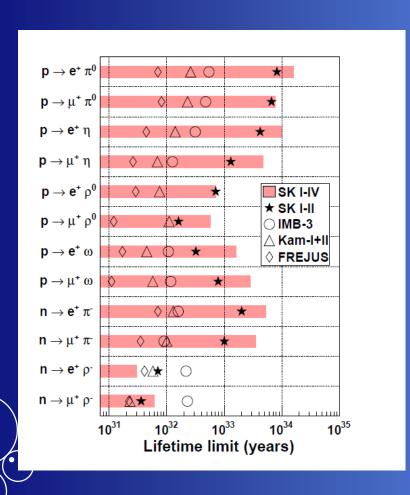
momentum: < 250 MeV/c(<150 MeV/c for p \rightarrow e $\eta(3\pi^0)$,e ρ ,e $\omega(\pi^0\gamma)$,


 $<200 \text{ MeV/c for p} \rightarrow \epsilon/\mu\omega(\pi^+\pi^-\pi^0)$



η mass (Signal MC) Total mass vs total momentum

Meson mass can be reconstructed with same quality for all period.


Use two box analysis as same as $p \rightarrow e^+ \pi^0$.

Two candidates (expected BG: 0.9 events)

Summary of N→anti-lepton+meson

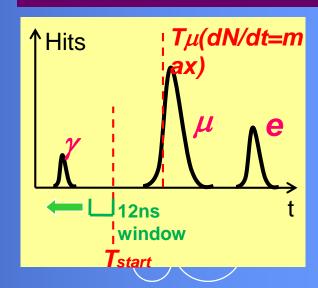
- Some candidates have been observed, but consistent with expected background.
- Lifetime limits in most modes are improved by factor
 2~3 since the previous publication (SK1+2).

3-3. p $\rightarrow \bar{v}$ K⁺ mode

General features

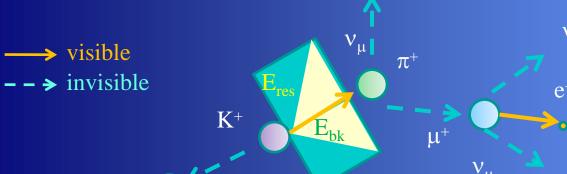
- $\bar{\mathbf{v}}$ cannot be detected = we cannot reconstruct proton mass and momentum.
- Momentum of K⁺ ~ 339MeV/c: below Cherenkov threshold and not visible by SK.
- K^+ stops in water and decay with $\tau = 12ns$:
 - $\rightarrow K^+ \rightarrow \nu \mu^+$: Br. 64 % (Method A)
 - \rightarrow K⁺ \rightarrow $\pi^+\pi^0$: Br. 21 % (Method B)
- In these two body decay case, decayed particles have monochromatic momentum.

Method (A) $K^+ \rightarrow \mu^+ \nu_\mu$


Selection:

- 1 μ-like ring with decay-e.
- $215 < P\mu < 260 \text{ MeV/c}$
- Search Max hit cluster by sliding time window (12ns width);
- $8 < N\gamma < 60$ hits for SK-1,3,4 4 < $N\gamma < 30$ hits for SK-2
- $-T_{\mu}-T_{\nu}$ < 75 nsec
- No neutrons (only for SK-4)

Event features;


- K^+ is invisible, stops and 2 body decay ($P_u = 236 \text{ MeV/c}$).
- \rightarrow Excess in P_{μ} .
- Proton in 16 O decays and excited nucleus emits 6 MeV γ (Prob. 41%, not clear ring).

 \Rightarrow Tag γ to eliminate BKG.

Method (B) $K^+ \rightarrow \pi^+ + \pi^0$

205 MeV/c

Event features;

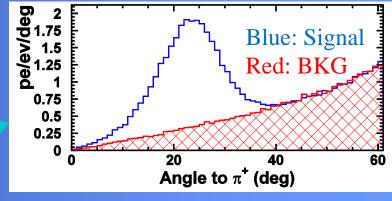
- Br. 21 %.
- π^0 and π^+ are back-to-back and have 205 MeV/c.
- $P\pi^+$ is just above Č thres. (not clear ring).

=> Search for monochromatic π^0 with backward activities.

Selection:

- 1 or 2 e-like rings with decay-e.
- $85 < M\pi^0 < 185 \text{ MeV}.$
- $175 < P\pi^0 < 250 \text{ MeV/c}$.
- E_{bk} : visible energy sum in 140-180 deg. of π^0 dir,

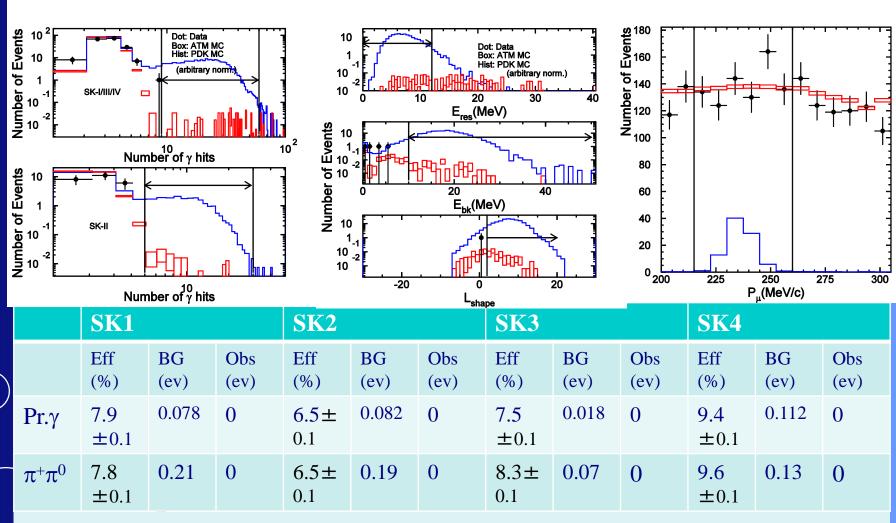
E_{res}: in 90-140 deg,


L_{shape}: Likelihood based on charge profile

 $10 < E_{bk} < 50 \text{ MeV}$

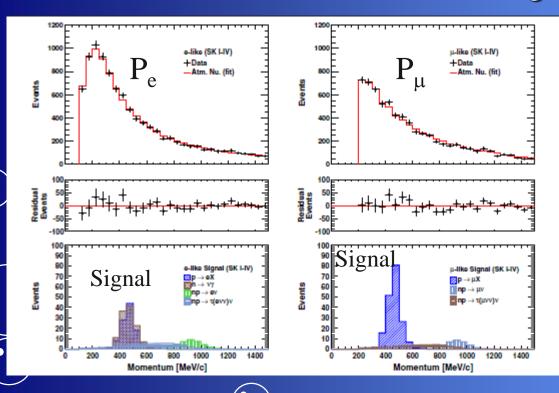
 $E_{res} < 12 \text{ MeV } (20 \text{ MeV for 1ring})$

 $\overline{L_{\text{shape}}} > 2.0 \text{ (3.0 for 1ring)}$


No neutrons

No Candidate observed.

 $p \rightarrow vK^+$ Lifetime limit (90% CL):


 $> 8.0 \times 10^{33} \text{ yrs } (349 \text{ kton} \cdot \text{yr exposure})$

3-4 Other decay modes

V. Takhistov (UCI), et al., PRL 115, 121803(2015)

$N(NN) \rightarrow charged lepton +X$

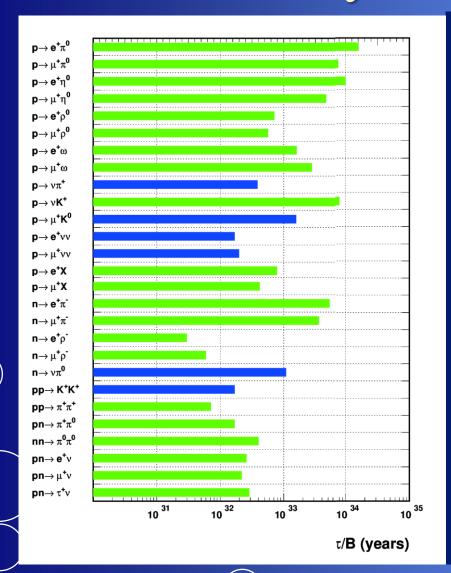
- Search for
 - $p \rightarrow e^{+}/\mu^{+} + X$, $n \rightarrow \gamma + X$ (X: invisible massless particle, $\Delta B=1$)
 - \rightarrow pn \rightarrow e⁺/ μ ⁺/ τ ⁺ + ν (di-nucleon decay, Δ B=2)
- Test momentum distributions of single ring events.

- Data and Atm.v MC agree well.
- Lifetime limits: fit data by Atm.v and signal MC.
- $\rightarrow p \rightarrow e^+X: > 7.9x10^{32} \text{ yrs}$
- $\rightarrow p \rightarrow \mu^+ X: > 4.1 \times 10^{32} \text{ yrs}$
- \rightarrow n $\rightarrow \gamma X: > 5.5 \times 10^{32} \text{ yrs}$
- \rightarrow pn \rightarrow e+v: > 2.6x10³² yrs
- $pn \to \mu^+ v: > 2.2 \times 10^{32} \text{ yrs}$
- $ightharpoonup pn \to \tau^+ v: > 2.9 \times 10^{32} \text{ yrs}$

Di-nucleon decays: $NN \rightarrow \pi\pi$

- Search for ${}^{16}\text{O(pp)} \rightarrow {}^{14}\text{C}\pi^{+}\pi^{+}$, ${}^{16}\text{O(pn)} \rightarrow 14\text{N}\pi^{+}\pi^{0}$, ${}^{16}\text{O(nn)} \rightarrow {}^{14}\text{O}\pi^{0}\pi^{0}$.
- $\Delta B=2$
- Tag pions in back-to-back. Pions are affected by nuclear interactions in nucleus and water.
 - ► Use Boosted Decision Tree for pp $\rightarrow \pi^+\pi^+$ and pn $\rightarrow \pi^+\pi^0$
- For nn $\rightarrow \pi^0 \pi^0$, use total mass and total momentum cuts, as same as $p \rightarrow e^+ \pi^0$.

Mode	Eff.(%)	BKG	Obs	Limit (10 ³² yr)
$pp \rightarrow \pi^+\pi^+$	5.9	4.5	2	0.72
$pn \rightarrow \pi^+ \pi^0$	10.2	0.75	1	1.7
$nn \rightarrow \pi^0 \pi^0$	21.1	0.14	0	4.0


Observation is consistent with BKG.

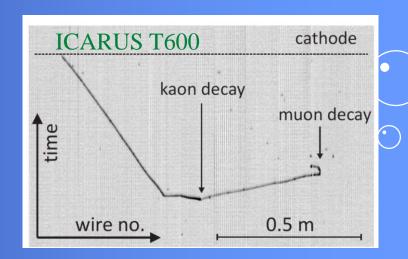
3-5. Summary of the current results

- Most of modes have been investigated with > 0.3 Mtonyear exposure (green in the left figure).
- Super-Kamiokande can cover large number of decay modes.
- Many of them are the most stringent limits on nucleon lifetime.
- We observed some candidates, but still consistent with expected backgrounds and no evidence of nucleon decay has been observed.



4. Future prospects

- Still no evidence has been found. Major decay modes are explored up to around 10³⁴ years.
- Proton lives longer, $\sim 10^{35}$ years?
 - \triangleright Run SK 10 times more (~200 years)? \rightarrow Impossible.
 - ➤ Need "the 3rd generation" detectors.
- Several projects are moving forward.
 - Water Cherenkov: Hyper-Kamiokande (HK)
 - ✓ Well established and stable.
 - ✓ Larger volume.
 - ✓ Can cover several decay modes.
 - New wave: DUNE (LAr), JUNO (L-Scintillator)
 - Excellent event reconstruction.
 - ✓ High efficiency, low background.

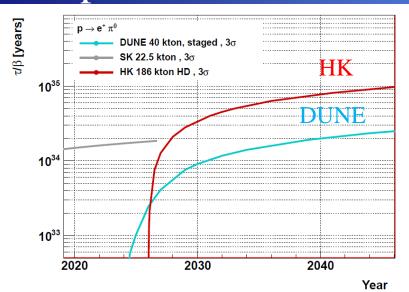


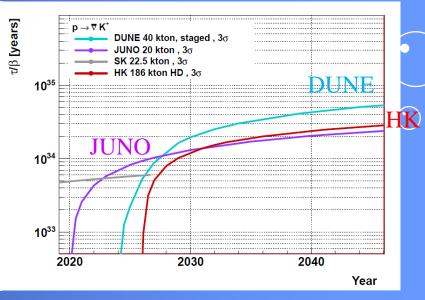
Hyper-Kamiokande

- Tank size: 60m (H)x74m(D), 186 kton, upright cylindrical.
- Start budget request for the first tank.
- 40 % photo coverage by new Box&Line PMT (photon counting eff. × 2, ½ time resolution than SK PMT).
- Can achieve better neutron tagging efficiency which rejects Atm.v BG.

DUNE

- Liquid Ar TPC, start from 10 kton, increased up to 40 kton later.
- Can reconstruct K⁺ track.
- Efficiency for p→vK⁺: 97 %, ~4 times more than HK.
- Efficiency for $p \rightarrow e^+\pi^0$ is limited by π interaction in nucleus and similar to HK.

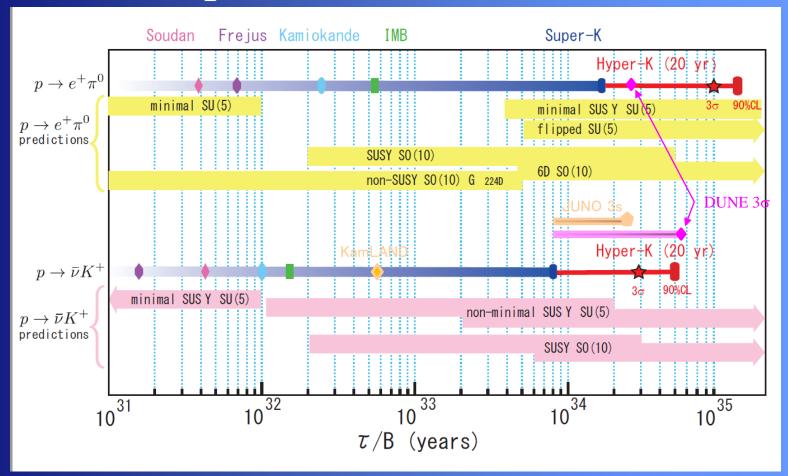




3σ discovery potential by future detectors

$$p \rightarrow e^+ \pi^0$$

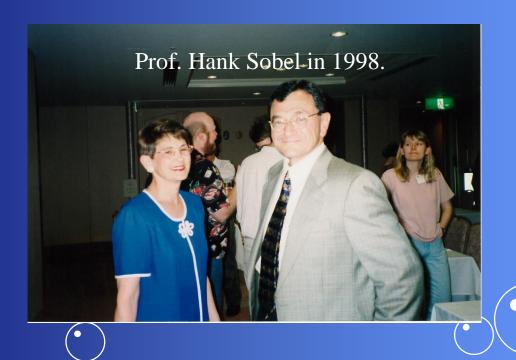
	Eff(%)	BG/Mton
HK	38.1	0.7
DUNE	45	1.0


Numbers are taken from Design Report.

Systematic error included only in HK case.

	Eff(%)	BG/Mton
HK	23.5	1.6
DUNE	97	1.0
JUNO	65	2.5

Comparison with Predictions

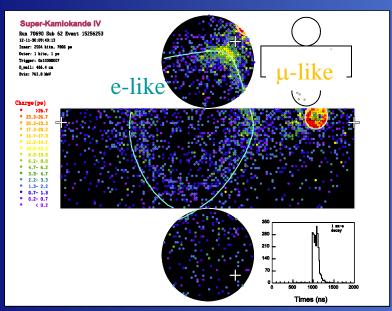


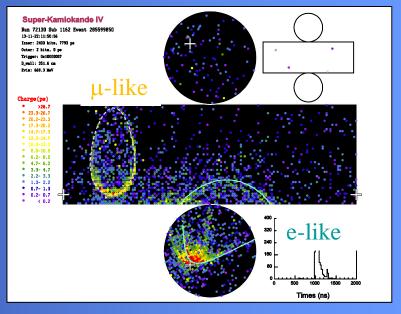
Thank you, UCI!

• UCI have been contributing Nucleon Decay Searches for long time. We really appreciate your great efforts!

Backup

Water Cherenkov Detector for Nucleon Decay searches


- Easy to construct large detector.
 - Need huge number of nucleons.
 - > SK: 22.5kton in fiducail = 7.5×10^{33} protons.
- High efficiency and low uncertainty.
 - Mesons from proton decay in oxygen suffer from nuclear interactions (absorption, scattering, charge exchange ...) which are dominant sources of inefficiency.
 - ➤ 2 hydrogens in water act as free proton, free from nuclear interactions.
- Backgrounds (atmospheric ν) are well understood.
 - SK is the world largest Neutrino Detection Experiment.



Observed events (both are 2-ring events)

1st event

2nd event

	TotMass (MeV/c²)	TotMom. (MeV/c)	Pe (MeV/c)	Pμ (MeV/c)	Ang. (deg.)
1 st	903	248	375	551	158
$2^{\rm nd}$	832	238	461	391	149

Note1: Cut: Ptot <250MeV/c, they were really close to boundary. Note2: The 2^{nd} event will go out from signal box with updated gain

correction.

Systematic errors

		$p \rightarrow e^+\pi^0$		$p \rightarrow \mu^+ \pi^0$	
		low P_{tot}	high P_{tot}		
Eff.					
	π -FSI	2.8	10.6	2.9	12.1
	Corr. decay	1.9	9.1	1.7	9.0
	Fermi mom.	8.5	9.3	8.0	9.6
	Reconstruction	4.6	5.6	3.7	3.3
	Total	10.2	17.7	9.4	18.2
BKG					
	Flux	7.0	6.9	7.0	7.0
	Cross section	14.5	10.4	8.4	7.8
	π -FSI	15.4	15.4	14.2	14.4
	Reconstruction	21.7	21.7	21.7	21.7
	(neutron tag)	10	10	10	10
	${\rm Total}~({\rm I/II/III})$	31.2	29.4	28.1	28.1
	(IV)	32.7	31.1	29.9	29.8
		4.0		4.0	4.0

Lifetime limt (90% CL) with 306kton yrs data

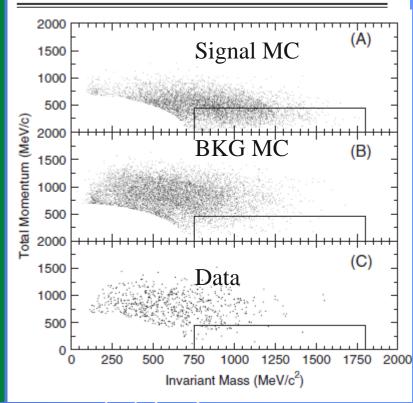
$$p \rightarrow e^{+}\pi^{0}$$
> 1.6x10³⁴ years
 $p \rightarrow \mu^{+}\pi^{0}$
> 7.7x10³³ years
(will be published soon).

Coming soon: Improved reconstruction tool.

- Current one: decide step by step: VTX, # of rings, PID, Mom ...
- New method: Fit everything at once by maximum likelihood.
- \rightarrow Higher resolution \rightarrow Expect to improve discovery potential.

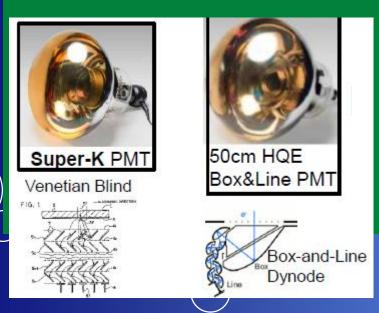
Results of $N \rightarrow 1+m$

Mode	Eff. (Av,%)	BKG	Obs.	Poisson Prob ≥Obs (%)	Lifetime limit (10 ³³ yrs)
p → e⁺η	25.8	0.78	0	-	10.0 (prev.4.2)
$p \rightarrow e^+ \rho^0$	3.7	0.64	2	13.5	0.72 (0.71)
$p \rightarrow e^+ \omega^0$	4.9	1.35	1	74.1	1.6 (0.32)
$n \rightarrow e^+\pi^-$	12.7	0.41	0	-	5.3 (2.0)
n → e+ρ-	1.4	0.87	4	1.2	0.03 (0.07)
p → μ+η	21.1	0.85	2	20.9	4.7 (1.3)
$p \rightarrow \mu^+ \rho^0$	1.8	1.30	1	72.7	0.57 (0.16)
$p \rightarrow \mu^+ \omega^0$	6.7	1.09	0	-	2.8 (0.78)
$n\rightarrow \mu^+\pi^-$	12.2	0.77	1	53.7	3.5 (1.0)
n→μ+ρ-	1.1	0.96	1	61.7	0.06 (0.036)



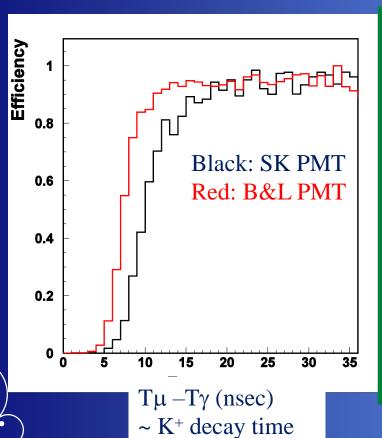
nn oscillation

- ∆B=2
- n annihilates immediately.
- Apply total momentum (P_{tot}< 450 MeV/c) and total mass cut (750 < M_{tot} <1800 MeV/c²) to multi-ring.
- Use only SK1 data (91.7kton yr).
 - > Eff. 12.1 %
 - > BKG: 24.1 events
 - Observed: 21 event
- Lifetime limt: $> 1.9 \times 10^{32} \text{yrs}$
- → oscillation time (free neutron):
 - $> 2.7 \times 10^8 \text{ sec}$
- (using nuclear suppressing factor by Freedman&Gil, PRD 78, 016002(2008), with 20~30% theoretical error)


$\bar{n} + p$		$\bar{n} + n$		
$\pi^{+}\pi^{0}$	1%	$\pi^+\pi^-$	2%	
$\pi^{+}2\pi^{0}$	8%	$2\pi^0$	1.5%	
$\pi^{+}3\pi^{0}$	10%	$\pi^{+}\pi^{-}\pi^{0}$	6.5%	
$2\pi^{+}\pi^{-}\pi^{0}$	22%	$\pi^{+}\pi^{-}2\pi^{0}$	11%	
$2\pi^{+}\pi^{-}2\pi^{0}$	36%	$\pi^{+}\pi^{-}3\pi^{0}$	28%	
$2\pi^{+}\pi^{-}2\omega$	16%	$2\pi^{+}2\pi^{-}$	7%	
$3\pi^{+}2\pi^{-}\pi^{0}$	7%	$2\pi^{+}2\pi^{-}\pi^{0}$	24%	
		$\pi^+\pi^-\omega$	10%	
		$2\pi^{+}2\pi^{-}2\pi^{0}$	10%	

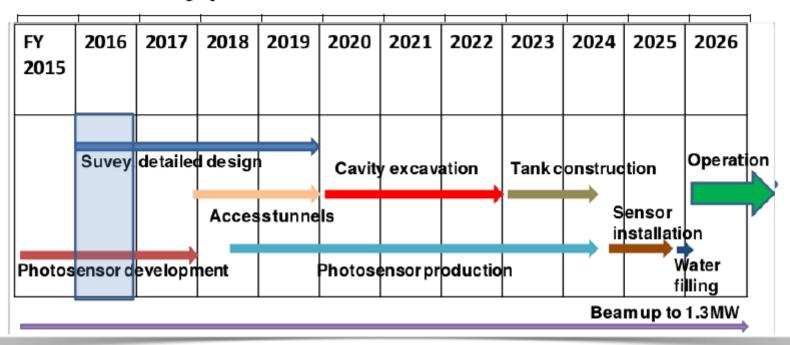
Current baseline design

- Photosensor: Box&Line PMT, x2 photon counting efficiency, ½ time resolution than SK PMT.
- Photo-coverage: 40 %, same as the current SK.
- Tank size: 60m (H)x74m(D), upright cylindrical.
- Starting budget request for the first tank.



Impact of Box&Line PMT

Efficiency curve of prompt γ tagging in $p \rightarrow \nu K^+$



- γ signal could be hidden by μ from K⁺ decay if time difference is short.
- If time resolution is improved, more γ close to μ can be detected.
- Selection efficiency of $p \rightarrow \nu K^+ \gamma$ will be increased by 44% and background events are reduced by 33% than SK due to new PMT.
- Not only volume but performance is also improved.

The Hyper-Kamiokande Timeline

- Forming proto-collaboration.
- If you are interested in, contact to me.

